Block to the production of full-length B19 virus transcripts by internal polyadenylation is overcome by replication of the viral genome.
نویسندگان
چکیده
The pre-mRNA processing strategy of the B19 virus is unique among parvoviruses. B19 virus-generated pre-mRNAs are transcribed from a single promoter and are extensively processed by alternative splicing and alternative polyadenylation to generate 12 transcripts. Blockage of the production of full-length B19 virus transcripts at the internal polyadenylation site [(pA)p] was previously reported to be a limiting step in B19 virus permissiveness. We show here that in the absence of genome replication, internal polyadenylation of B19 virus RNAs at (pA)p is favored in cells which are both permissive and nonpermissive for B19 viral replication. Replication of the B19 virus genome, however, introduced either by viral infection or by transfection of an infectious clone into permissive cells or forced by heterologous replication systems in nonpermissive cells, enhanced readthrough of (pA)p and the polyadenylation of B19 virus transcripts at the distal site [(pA)d]. Therefore, replication of the genome facilitates the generation of sufficient full-length transcripts that encode the viral capsid proteins and the essential 11-kDa nonstructural protein. Furthermore, we show that polyadenylation of B19 viral RNA at (pA)p likely competes with splicing at the second intron. Thus, we conclude that replication of the B19 virus genome is the primary limiting step governing B19 virus tropism.
منابع مشابه
Internal polyadenylation of parvoviral precursor mRNA limits progeny virus production.
Aleutian Mink Disease Virus (AMDV) is the only virus in the genus Amdovirus of family Parvoviridae. In adult mink, AMDV causes a persistent infection associated with severe dysfunction of the immune system. Cleavage of AMDV capsid proteins has been previously shown to play a role in regulating progeny virus production (Fang Cheng et al., J. Virol. 84:2687-2696, 2010). The present study shows th...
متن کاملNew Anti-Influenza Agents: Targeting the Virus Entry and Genome Transcription
Introduction: The emergence and spread of the pandemic H1N1 influenza virus in 2009 indicates a limitation in the strategy to control the infection, despite a long-established vaccination programme and approved antivirals. Production the proper vaccine against influenza is difficult due to the genetic recombination of virus in the event of pandemic and co-circulation of drug-resistance variants...
متن کاملCoxsackievirus B3 protease 3C induces cell death in eukaryotic cells
Abstract: Coxsackievirus B3 (CVB3) is the most common agent known to cause viral myocarditis. The viral genome encodes a single polyprotein that is cleaved to produce several proteins by virally encoded proteases. Most of this proteolytic processing is catalyzed by a cysteine protease called 3C. The 3C protease plays major role in viral replication and cellular damage. To understand the mecha...
متن کاملButhionine Sulfoximine Inhibits Cytopathic Effects and Apoptosis Induced by Infection with AIK-HDC Strain of Measles Virus
Measles virus (MV) is a highly contagious agent which causes a major health problem in developing countries. We studied the effect of buthionine sulfoximine (BSO) on the replication of an AIK-HDC strain of MV and its induced apoptosis in Vero cell lines. Methods: In this study, toxicity of BSO on Vero cells was investigated first, resulted in determination of sub-lethal or non-toxic concentrati...
متن کاملThe Full Length Hepatitis C Virus Polyprotein and Interactions with the Interferon-Beta Signalling Pathways in vitro
Background: Hepatitis C is a global health problem. The exact mechanisms by which hepatitis C virus (HCV) can evade the host immune system have become controversial. Whether HCV polyproteins modulate IFN signalling pathways or HCV proteins are responsible for such a property is the subject of interest. Therefore, an efficient baculovirus delivery system was developed to introduce the whole geno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 82 20 شماره
صفحات -
تاریخ انتشار 2008